TRAVAUX PRATIQUES "CHIMIE PREPARATIVE I"

SEMESTRE D'AUTOMNE 2024

Les laboratoires sont ouverts le jeudi de 8h00 à 17h00

12 septembre	08.00-08.45 Réunion de présentation des TPs aux étudiants (N. Cramer) –				
	BCH4310				
	9.00 Accueil des étudiants dans les laboratoires				
	Programme:				
	Installation des étudiants				
	Rappel des règles de sécurité par les assistants. Les attestations (annexe à				
	la fin du fascicule de sécurité) sont à remplir et à remettre signées aux				
	assistants avant 12h00				
	Début des synthèses monostades				
19 septembre	Suite des synthèses monostades				
	Purification / analyse / mesure de pureté				
	Formation RMN (45 minutes par groupe, selon programme)				
26 septembre	Fin des synthèses monostades				
	Début des synthèses multistades				
03 octobre	Rendu du 1 ^{er} rapport: synthèses monostades				
	Synthèses multistades				
	Formation MS et IR				
10 octobre	Synthèses multistades				
17 octobre	Synthèses multistades				
31 octobre	Fin des synthèses multistades				
	Inventaire du matériel dans les laboratoires. Le matériel manquant est				
	complété en s'approvisionnant au magasin.				
	Rendu du 2ème rapport: 07 novembre 2024, Synthèse multistade et				
	analyse organique				

I- Synthèses monostades

Les assistants reçoivent la liste des étudiants avec indication du n° du programme pour chacun d'entre eux. Les produits de départ des synthèses monostades seront préparés à l'avance par le responsable technique, Monsieur Claude Nuessler (quantités indiquées dans le mode opératoire).

- 1) Avant de lancer chaque réaction, l'étudiant doit vous présenter la fiche de données de sécurité remplie, ainsi que le mécanisme de la transformation. La réaction peut être lancée une fois que: (i) l'assistant a signé la feuille de données de sécurité; (ii) les instructions concernant le montage/le protocole expérimental/les conditions de work-up ont été clairement comprises par l'étudiants. La fiche de données de sécurité est scotchée sur la vitre de la chapelle et l'assistant remet le produit de départ à l'étudiant.
- 2) Les réactifs (autres que les produits de départ) pour chaque laboratoire sont stockés dans une armoire spéciale située dans le corridor. Les bouteilles sont transportées dans les laboratoires pour prélever les quantités nécessaires aux réactions en cours. Avant de prélever les réactifs, l'étudiant doit présenter la fiche de pesée à son assistant. La signature de l'assistant atteste que l'étudiant a compris la nature du réactif et les précautions à appliquer lors de son utilisation.
- 3) A la fin de la synthèse, vous devez contrôler la masse et la pureté du produit obtenu en présence de l'étudiant afin de confirmer les valeurs qu'il indiquera dans son rapport.

III- Synthèse multistade

Les assistants reçoivent la liste des étudiants avec indication du n° du protocole pour chacun d'entre eux. Le produit de départ des synthèses multistades sera préparé à l'avance par le responsable technique, Monsieur Claude Nuessler (quantités indiquées dans le mode opératoire).

Comme précédemment, la fiche de toxicité doit être préparée, signée et placée en évidence sur la chapelle avant de débuter la réaction. Vous devez vérifier les intermédiaires synthétiques avec les étudiants.

Les sels communs, les acides et les bases servant à la préparation des solutions aqueuses, la silice et les plaques CCM sont stockées dans les laboratoires. Lorsque le stock est vide, une réserve est disponible au magasin. Lorsqu'une bouteille de réactif est terminée, il est nécessaire de le signaler au magasin.

III- Analyse organique

Une familiarisation aux techniques analytiques modernes pour la caractérisation des molécules organique est au programme de ces travaux pratiques. L'installation récente d'un appareil RMN dans la zone des laboratoires de TPs permet l'analyse systématique des produits de synthèse par RMN ¹H et ¹³C. Au cours de la semaine 4, chaque groupe d'étudiants recevra également une formation en spectrométrie de masse et en spectroscopie infra-rouge. Un intermédiaire ou le produit final de la synthèse multistade sera donc analysé par RMN ¹H/¹³C, MS et IR.

Un intermédiaire de la synthèse multistade ou un produit des syntheses monostades (à decider avec l'assistant) sera caractérisé par MS, IR et RMN ¹H/¹³C. Ces caractérisations seront présentées dans le second rapport.

Ces formations seront réalisées selon le planning suivant :

Formation RMN – 19.09.2024 – Meeting point: in front of room CP1 468

Groupe	Group 1	Group 2	Group 3	
Horaire	9.00 – 9.45	10.00 – 10.45	11.00 – 11.45	

Formation MS 10.10.2024 - Meeting point: hall du BCH, niveau 1

Groupe	Group 1	Group 2	Group 3
Horaire	8.30 – 9.45	10.00 – 11.15	11.30 – 12.45

Spectrométrie de masse

La formation sera dispensée par le **Dr Laure Menin** (http://isic.epfl.ch/ssmi). Concernant la préparation des échantillons, il faudrait prévoir de les déposer au Service de Spectrométrie de Masse la semaine précédant la formation : 1 échantillon par étudiant (1 intermédiaire ou le produit final de la synthèse multistade), à conditionner dans un eppendorf (100 µg/ml, solvant : THF ou MeOH). Les formulaires de soumission seront remplis par les assistants (https://eln.epfl.ch/) en indiquant SCGC pour le nom de l'unité/labo.

RMN ¹H et ¹³C

La formation sera dispensée par le **Dr Aurélien Bornet** (http://isic.epfl.ch/NMR) le premier jour des travaux pratiques. A cette occasion, les étudiants recevront les recommandations pour la préparation des échantillons ainsi que la formation sur l'instrument RMN installé à l'Amphipole. Les solvants deutérés et les tube RMN seront disponibles au magasin.

IR

Chaque assistant trouvera une période pour montrer à ses étudiants l'enregistrement d'un spectre IR sur un des instruments du BCH

PRACTICAL SESSIONS "PREPARATIVE CHEMISTRY I"

FALL SEMESTER 2023

Laboratories are opened on Thursdays from 8.00 am until 5.00 pm

September 12	8.00 – 9.45 Presentation session to the students (N. Cramer) – Room Salle		
	BCH4310		
	9.00 Welcome of the students in the laboratories		
	Program:		
	Installation in the laboratories		
	Reminder of safety rules by the assistants. The attestation (annex to the		
	safety instructions) has to be completed, signed and given back to the		
	assistants before 12h00.		
	Beginning of monostep syntheses		
September 19	Monostep syntheses		
	Purification /Analyses / purity controls		
	Introduction to NMR (45 minutes per group, see annexed program)		
September 26	End of monostep syntheses		
	Beginning of multistep syntheses		
October 03	Deadline to give back the first report: monostep syntheses		
	Multistep syntheses		
	Introduction to MS and IR		
October 10	Multistep syntheses		
October 17	Multistep syntheses		
October 31	End of multistep syntheses		
	Deadline to give back the second report: November 07, 2024, Multistep		
	syntheses and organic analysis		

I- Monostep syntheses

The assistants receive the attribution of programs to their students in advance. The starting materials prepared in advance by the technical supervisor, Mr Claude Nuessler, according to the quantities indicated in the experimental procedure.

- 1) Before setting up each reaction, students must present to their assistant the completed safety data sheet as well as the reaction mechanism. The reaction can be started once: (i) the assistant has signed the safety data sheet; (ii) all instructions regarding the set-up/the experimental protocol/the work-up have been clearly understood. The safety data sheet must be placed on the sash of the fume hood and the starting material is then given to the students.
- 2) Reactants (other than starting materials) for each laboratory are centralized in a special closet located in the corridor. Bottles must be taken into the labs to take the appropriate quantities and put back in the dedicated closet. Before collecting reactants, students must present a weighting sheet to their assistant. Signature of the assistant is required to ensure that the nature of the reactant and appropriate cautions for its manipulation are known by the student.
- 3) At the end of the syntheses, the quantity and purity of final products are controlled in the presence of the assistants. These data will be inserted in the scientific reports.

III- Multistep syntheses

The assistants receive the attribution of programs to their students in advance. The starting material is prepared in advance by the technical supervisor, Mr Claude Nuessler, according to the quantities indicated in the experimental procedure.

The instructions given above are similarly applied.

Common salts, acids and bases used for the preparation of aqueous solutions, silica gel and TLC plates are available in each laboratory. Once the stock is empty, a reserve is available at the chemical store. Once a bottle of reactant is empty, it must be signaled to the chemical store.

III- Organic analysis

An introduction to modern analytical techniques for the characterization of organic molecules is part of the practical sessions of Preparative Chemistry I. The recent installation of an NMR instrument in the lab area of the practical session (CP1 468) allows **the systematic analysis of all reaction products by** ¹**H and** ¹³**C NMR**. During the week 4 of the semester, each group of students will also receive a presentation on mass spectrometry. Each assistant will be responsible for showing once to the students the use of an infra-red spectrometer.

An intermediate of the multistep synthesis or a product of the monostep syntheses (to be decided with the assistant) will be fully characterized by MS, IR and $^{1}H/^{13}C$ NMR. This characterization will be part of the second report.

The formation will be organized according to the following agenda:

Introduction to NMR – 19.09.2024 – Meeting point: in front of room CP1 468

Group	Group 1	Group 2	Group 3
Time	9.00 – 9.45	10.00 – 10.45	11.00 – 11.45

Introduction to MS - 10.10.2024 - Meeting point: entrance hall of BCH building, level 1

Group	Group 1	Group 2	Group 3
Time	8.30 – 9.45	10.00 – 11.15	11.30 – 12.45

Mass spectrometry

The formation will be given by **Dr Laure Menin** (http://isic.epfl.ch/ssmi). The samples should be brought at the Service of Mass Spectrometry the week before the formation: 1 sample per student (intermediate or final compound of the multistep synthesis) to be prepared in an Eppendorf (100 μ g/ml, solvent: THF or MeOH). The submission forms should be filled by the assistant (https://eln.epfl.ch/roc/auth/login?continue=https://eln.epfl.ch/), mentioning SCGC for the name of the lab/unit.

¹H and ¹³C NMR

The formation will be given by **Dr Aurélien Bornet** (http://isic.epfl.ch/NMR) during the first day of the practical session. The students will receive instructions regarding sample preparation and performing NMR acquisition of the instrument located at the Amphipole. Deuterated solvents and NMR tubes will be available at the chemical store.

IR

Each assistant will allocate some time to show the acquisition of an IR spectrum on one instrument located in BCH, to the students.

Fiche de pesée – Weighting sheet

Numero de place :	Date :	Visa assistant :
Nom IUPAC :		
Localisation : CP464		
Quantité (en g) :		

Safety data sheet To be completed before starting any reaction and placed on the sash of the ventilation hood					
Last name, first name :			Da	te :	
	Reaction (starting ma	aterial, reagents, solve	ents, conditions, expec	ted reaction product)	
Compound/solvent Quantity (m or v)					
Number of mmol					
Equivalents					
Flammability					
Toxicity Corrosive for the skin					
Danger by inhalation		ļ			
Carcinogenic					

Signature of the assistant: